
Sprite Multiplexing
on Nintendo DS

Daniel -MsK`- Borges
2007/03/15

0.1

I. The beginning

I'm currently developing a shooting game on Nintendo DS. I like shooting
games with tons of bullets on screen to be dodged, those shooters called bullet hell,

manic shooters, 弾幕 (danmaku), barrage shooters, etc.
I also like my Nintendo DS, so I decided to make my game on it, as it's pretty easy to
get stuff to run code on it.

Nintendo DS is a wonderful handheld machine for 2D games, the 2D engine
included does much of the work needed to make 2D games :
– 128 sprites per screen with rotate/scaling options
– 4 scrolling backgrounds with rotate/scaling options
– alpha blending
– etc.

But the problem for my upcoming game appears just here : ONLY 128
SPRITES !!I can barelly display my bullets with that. Because I read somewhere in
the past that it was possible to get more sprites than this 128 on GameBoy Advance
(Nintendo DS is just an evolution of that hardware), I began browsing the web to
learn those techniques and found this :

1. using a 16colors background and draw bullets manually on it
2. use DS 3D Hardware to draw polygons which will do the sprite job
3. sprite multiplexing

Problems with 1 and 2 :
1. it uses one of the 4 backgrounds, it doesn't take the power of the 2D engine and

uses CPU.
2. DS can render 3D but only on one screen, to make 3D on both screens, you

have to render a screen and then the other and so on, so you downgrade your
game to 30FPS (which is not so bad but, I dislike the idea and 3D engine is not
for 2D, after all)

So I decided to use the third technique.
My reference on implementing this technique is http://gba.pqrs.org/tips/sprite-
multiplexer.html and it's all in Japanese... I « translated » it, now I understand how
hard is the job of a translator.
This document isn't a translation of it but it's pretty much like it, as I use the same
technique adapted to DS (and on both screens !) and this presentation will use the
same plan.
Many thanks to Takayama Fumihiko !

http://gba.pqrs.org/tips/sprite-multiplexer.html
http://gba.pqrs.org/tips/sprite-multiplexer.html

II.Sprite Multiplexing ?

It's a technique that was used on old hardwares, those ones only having 8
sprites handled by the hardware like MSX, Atari, Amiga, NES/Famicom, etc.
It's pretty simple : as the screen is rendered line per line, the idea is to move a sprite
between two lines to get it displayed two times !

Repeat this multiple times for a higher number of sprites and you can display
hundreds of sprites without using all the sprites handled by the hardware.

The problem : here is a critical point, if you modify the sprite position while it
is rendered, only half of it will be rendered ! This can be good for effects but it also
can be dangerous as a sprite can become invisible.

Solution : only use the multiplexer to display sprites that are not really
important visually. (bullets are important for gameplay but if only 5 lines of it are
rendered on 8, for example, it's not a big problem, but an half drawed enemy, boss or
maybe worse, a player, is not acceptable)

III.Seems interesting, how can I use it on my DS ?

1. Let's remember some things about Nintendo DS.

About sprites :
There is a distinction between Sprite data (what is rendered) and Sprite Information
(where, what data, what palette, what effects). We only care about Sprite Information,
with libnds, this information is stored in the SpriteEntry structure :

typedef struct sSpriteEntry {
 uint16 attribute[3];
 uint16 filler;

} SpriteEntry, * pSpriteEntry;
Refer to http://nocash.emubase.de/gbatek.htm to know the job of each of the 3
attributes but remember that X and Y position are stored in attribute[1] and
attribute[0] respectively.
An array[128] of this structure is stored at OAM and OAM_SUB (for main and sub
screen) by the hardware, so to draw a sprite you basically just have to copy one
SpriteEntry to an entry of this array, the OAM (Object Attribute Memory).

About interrupts :
Nintendo DS have a lot of interrupts but what we need here is only the VBLANK
(interrupt triggered when the screen rendering is finished) and HBLANK (triggered
when line rendering is finished). Well, we'll not use HBLANK as it triggers every
line but else VCOUNT, that triggers every line you want (use SetYtrigger()).

2. Objective : more than 400 sprites using only 64 true sprites

As you may already spotted, we need to draw our sprites sorted ordered by their Y-
axis position. So a first approach would be to make an array of 400 sprites, fill it with
your bullets, sort it (with something really fast...) and then draw the first 64 sprites,
when they are drawed, replace the 64 old sprites by 64 new ones at the good
HBLANK, and so on.
I tried. It doesn't work. Quicksort is way too slow !
Here comes Takayama Fumihiko !
The technique he used in his bulletgba is the better I saw, I only have one reproach
I'll discuss later.
We still keep our array of 400 sprites (well, he used an array of 512 and I use an array
of 1024 (-:) but we use more stuff : we divide the screen in blocks of lines, add an
array to count sprites per block, set an array of pointers to the first array and fill it !
Hummmm, this is not clear, let's see :

1. Count sprites per block
2. Set pointers to the big sprite array to know where starts each block
3. Effectively add each sprite to the big array using the block-pointers

Doing that this way, sprites are sorted automatically per block !

This is a two pass technique. I have to work on that to make it one pass only, this is
the only thing I don't like in it.

http://nocash.emubase.de/gbatek.htm

3. Let's code a bit (how I^WTakayama implemented it)

I started reading spritedoubler.hpp and spritedoubler.cpp of bulletgba and... I
almost did the same... I just find my code easier but I'm new to C++ so it maybe a lot
improved. I just doubled everything for dual screen and did faster HBL interrupt
handling functions.

First thing to do : doubler buffering. If you try to modify what is currently drawed, it
would be ugly, so you need 2 structures to handle your multiplexing data, here is
mine :

#define MAX_SPRITES 1024
#define MAX_SPRITES_PER_BLOCK 64
#define BLOCK_LINES 4
#define BLOCKS (SCREEN_HEIGHT / BLOCK_LINES)
...
struct SET { // S.E.T. : Sprite Entry Table

SpriteEntry Sprites[MAX_SPRITES];
u16 registeredInBlock[BLOCKS];
u16 addedInBlock[BLOCKS];
SpriteEntry * Starter[BLOCKS];
SpriteEntry * last;

};

Sprite Entry Table, what an ugly name, don't you think ?
You'll have 4 of these, two to double buffer the main screen and more two for the sub
screen.
Sprites is ...our sprites.
registeredInBlock contains the sprite count per block, addedInBlock contains
the same information, it's resulting of the two pass system, one reason to dislike it.
Starter is the pointers to Sprites giving us the distinction between each block.
last is a pointer to Sprites with the last MAX_SPRITES_PER_BLOCK sprites in
Sprites, so the last sprites on screen will always be displayed without any glitch,
good.

Now that you have this structure, you just have to fill it and display it, so let's see
how to display it.
Firstly, you need to swap your buffers on the Vblank interrupt, not too hard.
Next, on each MAX_SPRITES_PER_BLOCK Hblank, you may think, just copy
from Starter[current line] to OAM, but this will not work : only the first
BLOCK_LINES lines of each sprites will be displayed !
Here comes the optimize() function. This function takes each Starter and drives it
back of MAX_SPRITES_PER_BLOCK – registeredInBlock[current line], thus, each
HBL interrupt, you'll display your new sprites and a maximum of old sprites to
complete them. Here is some problem, some sprites will not be displayed correctly if
you have too many sprites in a block, just keep that in mind when you make your
game to avoid ugly things.

IV. Conclusion

From what I brain-stormed and what I saw on the web, this is the best technique so
far to display LOTS of sprites (and not too big ones, like bullets). The performances
are good, my demo uses ~Vblank time to multiplex 800 sprites (well a bit more, as
some sprites are displayed on both screens when they go from one screen to the
other). This could be better with a one-pass system, I believe but for the moment I
still prefer the two-pass version to the one-pass versions I did.

Hope this document will help you !

You can also use « sprite moving when drawing » to make some effects like moving
vertically a sprite while drawing to make a laser or moving it from left to right while
displayed for wave effects, etc.

Have fun !

